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A configurable camputer architecture based
on-the concept of dynamic modification of the
machine structure to tailor it to the algorithm
being executed is presented. The machine con-
sists basically of: a set of operational units
performing basic functions, a dispatcher to
handle the calls on these units, a tree stack
that provides the running enviromrent to the -
program and a memory where data and code resi-
des. The application of this architecture to
an expression language ~LISP- is considered in
same detail. )

INTRODUCTION. Centralized seguential control in a
coTputer acts in a limiting fashion for same algo-
rithms that are naturally parallel,

Linear memory. The addressing schemes of most
mzchines are not natural to handle list and trees.

Faster computers appear each year{1 1 But there
is a limit in the speed attained by electronic cir-
cuits, when you take into account switching times,

“propagation delays, and other effects| 21,33 }

But even for a machine that performs much of its
canputation in a parallel fashion, the prograrmmer:
{the user) has to cammand it properly. The langua-
ges available to this user fall at least in three
classes: a)Parallelism is handled explicity by the
userj 7'1 This gives him the power to specify in
detail the flow of a program; b)The user writes his
code in "normal™ language such as Fortran., The For-

tran campiler tries to parallelize as much as pos-

sible the source codef 30]. If the language was ori-
ginally designed for sequential coding, the campi-
ler has to :iec'ruce which statements are sequential,
and which cothers can be processed simultaneously.

" Sincronizetion, dead-locks and other problems are
handled by the cawpiler c)High level languade fits
naturally into a camputer architecture, because it
is well tailored to its characteristics, and it is
also convenient for the user|22,17].

A good example of the later is the lamdda-calcu—

lusl 171, and a language that embodies it: LISH 23]

We refer here to pure LISP, without the program
feature PROG, GO TO's, operators such as RPLACR
and RPLACD, and other impurities,

Finally, most of the hardware produced today is
fixed. But a given program could profit; at cer-
tain stage of its executicn, from more adders than
those bought with the machine.

THE PROBLEM. We would like to address the desion
of a machine that: 1l)Executes in parallel severzl
portions of the same program; 2)Frees the program—
mer fram the need to specify what things are cam-
puted before, simultaneously or after other
things. The machine should allow a more '"natural™
way of multiprocessing.; 3)}Dynamically reccnfiqu-
res itself to the algoritlm being executed, The
machine should sense the need of different exe-
cution boxes at different times, and should con-
“vert the non-used boxes to more useful ones.; 4) -
Exhibits tolerance to failures.; 5)Has self—check-
ing capabilities.
THE SCLUTICN. The model proposed consists basical-
ly of 4 elements: 1.-The mamory (passive memocy).
It contains programs, data and results that are
not in the grill at this mament., 2.-The grill
(active memory). It holds the program(s) being
executed., 3)The boxes (operational units). Each
box performs a primitive operation of the language
such as MULTIPLY, SINE, LIST. A MJLTIPLY box
searches the grill, through the blackboard, for a
maltiplication ready to be done, executes the ope-
ration if finds one and leaves the result in the
grill., 4.-The blackboard (dispatcher). Points to
places in the grill containning functions to be
evaluated. The boxes look in the blackboard for
work to do.

An expression is placed in memory by an I/0
mechanism. At the end of the 1/0 a mark on the
‘blackboard is placed. Such mark is a pointer to
the head of the expression in memorv. A mark on
the blackboard is a flag for attention to the

- boxes. The boxes can be micro—camputers that imple

ment carplex instructions and bookkesping func—
ticns. The boxes are either busy doing their func-
tion or else they are continvously searching the
blackboard for things to do. In the particular
case of the initiation of an execution a START box
is called in order to build the head node in the
grill, fram the code (the expression) placed in’
memory, and fran then on a tree is built {a tree
of stacks)on the grilil 5]. Bach node can be regard
ed as a STACK, and represents a function name with
its arquments. The tree expands and contracts as
the evaluation of the program goes on, Damands for
evaluation of a function are placed on the black-
board whenever the arguments of such function are .
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all evaluated, This means that the evaluation of
the function is ready to proceed. :

Each call for a function (a tree-ncde) has a
counter of unevaluated arguments that is decre-
mented in ore for each evaluated arqument, (No-
tice that the arouments are evalvated in parallel).
This decrement is performed by each box that eva-
luates an arqmument. In addition, the hox that re-
uces such counter to zero will place a mark on the
blackboard, meaning that this function, is now
ready for evaluation.

The values replace (take the place of) the eva-
luated expression, in the grill. Eventually the
whole tree of the original program will collapse -
to 2 data-object {(a mumber, a iist), this being
the end of the evaluation of the expression.

One has to notice that this process is beain
held in parallel; the grill is growing and the bo—
xes are placing constant demands on the blackboard,
where other boies are continucusly searching for
operations to perform, The limiting factor in pa-
ralellization is the amount of baxes. A process of
reconfiguration {(explained later) takes place
whenever demards for certain type of boxes exceed
its availability.

In order to easily incorporate concepts of high
level languages, the grill's architecture is based
on a tree structured memory] 5]where the nodes
{ fig. 1] are stacks, providing an envirorment to

handle fres variables, bindings and return's to the
calling environment (static and dynamic links) and
a set of pointers to the arcuments.

Boxes.~ All baxes realize primitive ope_rat:l.ons.
They bave a tag that identifies them; eg., SIN or
TAN box. They are organized in affinity groups for -
reconfigquration purposes. The sequence of opera-
tion of a b is as follows: it searches the black-
board in a specific area according to its tag;
firds a demand from some node in the grill; erases
the mark on the blackboard; goes on the evaluate
the node, placing in it, its value; decrements the
counter of unevaiuvated arqguments of its father by
one; if zero places a mark on the blackboard tell-
ing that the father is ready for evaluation; the
sons are returnped to a pool of free.

Grill.- The grill is a place where a prog'ram is
slowly converted into results by the action of the
boxes. It is a tree of nodes each of which has a
structure as seen in figure 1, mainly an access
link that points to higher level free variables
and parameters bindings, accesible within the envi'
romment; a control pointer that points to the call
ing envirorment| 6]; a pointer to code in the pasi-
ve manory, a function name or identification: a
counter of unevaluated argquments; a set of argu-
ments,

The grill is crganized in active nodes that are
being processed, and-a pool of free nodes, We may
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FIGURE 1, THE CONFIGURABLE COMPUTER MODEL AND A NODE.
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think that each node is a memory bank with asyn-
¢ronous access to it. The blackboard is pointing
to the nades ready for evaluation, Nodes may be
exhausted causing a machine eryor,

Blackboard.- The blackboard is a linear memory
divided into areas where boxes place marks of nodes
demanding evaluation. Areas are divided by box
type; the division is with soft registers that can
be moved as demands grow. The blackboard may be
exhausted {eg. in an infinite recursion) , causing
the machine to abort, .

Memory.~Passive memory contains programs, data
and results. The grill usually points to same of
these, Certain baxes copy programs fram memory to
the grill for evaluation, and copy results fram
the griil. I/0 transactions take place be
meory and external devices. :

To poinpoint same of these ideas we propose a
1ISP machine, that is, a machine that process
LISP programs residing in memory as s-expressions,
{We consider "pure LISP"). . .

Boxes are the LISP primitives CAR, (DR, OONS,
ATOM, EQ, plus same programming functions LAMBDA,
IF, AND, etc.] 23], The following classes of boxes
are needed:

~Primitive and programming operations CAR,

ZAMEDA. ..

—Boxes that handle calls fram user defined func

tions. -

-Converter

~1/0 (special box).

An s-expression is read into mamory by the I/0
box, and a node pointing to it is created in the
grill; then executicn begins.

~VARIABLES. A variable is evaluated by finding
its value in the current a-list. In our case a
stack is formed in each LAMBDA node, and a pointer
is held to the calling enwiromment. -

-IF. The format of this expression is (IF P Q
R). If P is true, Q is evaluated; otherwise R is
evaluated| 23], Initially an IF node is created,
having only the argument P and a pointer to the
rest of the code in passive memory, If the pointer
is nil it means that the argument just evaluated
was O or R, so the IF has to deliver it as a
valve, thus campleting its evalustion. Else,P is
evaluated leaving a TRIE or FALSE value. The IF
box goes into action bringing O or R and also sett
ing the pointer to the code to nil, the counter
of unevaluated arguments to 1 and then allows the
evaluation of the argument to proceed. Since the IF
delivers values at vaerious stages (first P and then
0 or R), it frees noded Fig, 21

~IAMBOA binds variables in LISP and evaluates an
expression {form). It can be used as a primitive:
{0 (X) (DR X)) (QUOTE (& B C})) or in a function
Gefinition., The birding takes place in the stack
built in the node. Notice that the access and con-
trol links both point to the calling frame. Bind-
ings for free variables are traced up in the call
structure chain. A special case is the FUNARG pro-

blem where access and contrel links do not point to

the same places [6] . . ..

. 1AMBDA has a set of variables; a form (its body)
- and its arquents (to be bound with its variables).

Whenever a LAMEDA is placed on the grill, the ar—

curents are evaluated, producing a zero in its

counter of unevalusted argquments. Then a LAMEDA

tnxisdararﬂed,whichinhxmbindsthearmn&_
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> tc) on the code link. Then
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When 2 §2 evaluated a 2ero is placed
in the IF node and then a reguest for
an IF box 1f placed .n the blackboard.
. The box sees Lf the link code 1s zerc
Ti{megning that the value of O or R stands for the IF value}l and
decrements the value of ‘the counter of ity father.

FIGURE 2,

with its variables, placing a 1 into its counter
and having as argument a pointer to the form, which
is now placed on the grill by the LAMBDA box. At
the same time a zero is placed in the code link
indicating that when evaluation of the form has
ended, the LAMBDA box also exds and leaves the node
transformed into an s-expression (a result), As
soon as a node is not used it gets into the pool of
free nodes )

-RECURSION is hardle by expanding the tree in
the grill, replacing the name of the function (each
time is called), by its definition. We examine the
case where user-defined functions are evaluated,
Assume that the name of a function and its argu-

‘ments are already on the grill, in some node, Its
prouments are evaluated and a zero is placed in its

counter, The box that decrements the counter ard
makes it zero also places a demand in the black-
board in the section of the DEFINED-FUNCTICN boxes.
Once this demand is attended such box erases the
name node replacing it by a LAMBDOA node; in its
counter places a zero and the grill continues its
evaluation as a regular IAMBDA, When it finds the
recursive call, the process is reseated,

- Other LISF functions are conputed in a similar
manner. For instance, (AND F1 F2 F3...}places F1 on
the grill and holds its other arguments in passive

" memory. If Fl is FALSE, the AND becomes FALSE it—

self; otherwise F2 is placed on the grill, etc.
RECONFIGURABILITY. A given machine of the type des~
cribead above consists of a mixture of boxes; for
instance, 4 CAR's, 6 OONSes, 2 COD's, 3 AND's,etc.
This mixture may not be optimal for the whole exe-
cution of a program, hence the need to change the
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camposition of the machine. It is through this
change of composition that the machine reconfiqures
itself, We are not considering more camplex wavs
to reconfigure: the creation or proposition of new
primitives; new datapaths among the boxes, etc.

Tp make these changes, the machine needs:

1)To detect which tvpe of boxes are iddle most
of the time t, where t is small interval (a few
millisecords). Reconfiguration occurs at the end of
each period t.

2)To detect which tvpe of boxes are very busy
during the same period t. These two actions (1) and
(2) are performed with the help of a "laziness"
counter attached to the blackboard of .each type
boxes. It contains the mumber of times boxes of
type in question didn't fird arytlﬂlng to do, in
the period £,

3)To decide what box{es) to change into what
other (s) .

4)To make the chanc:e, that is, to reconfigure. -
X CONVERIER box will seize the (iddle) box chosen
in step 3, ard plants in it a new microprogram,
converting it into one of the desired type. In
addition, it will change its "type" identifier:
such box willi no longer be regarded as a “"SINE"
box, bat as a "TANGERT" bax. This change will
affect some datapaths of the box; for instance, if
the box {with a new function) searches the whole
blackboard and finds nothing to act wpon, it will
add & one to the TANGENT counter, and not to the
SINE counter, as it was previously doing.

5)To reset to zero the "LAZINESS" counters of
{2). To initiate a mew reconfiguration period t.

6)'Ib have same statistics ready to answer the
owner's question "what new boxes should I buy
next?”, This feature is optional.
INPUT OUTPUT. We can regard our LIP machine can be
thought as sharing its passive memory with a chan—
nel or same 1/0 mechanism with performs 1/0.
OTHER PROPERTIES. We list several properties this
machine has: (a)The machine can process any langua-
ge expressed as a lambda-calculus formalism,; (b)
Unless the user explicity wishes to do it, there
is no way to specify sequential evaluation when it
iz not needed or desired.; (c)There are no GOIO's,
LABFTIS or CALL EXIT (STOP).; {(d)The machine does
not need a copiler or interpreter to execute the
high level language.; (e)There is no central con—
trol, cpa, program counter, In fact, there is no
machine cvcle. It is an asynchronous architecture.;
{f)There are no interrupts, deadlocks or priori-
ties.; {g)The primitive boxes need not be so pri-
mitive. Boxes of different speeds, configurations
and camplexity can coexist.; (hiThe machine is mo~
dularly expandible.; {i)The machine performs maxi-
mal parallelization.Of course, faster computation
could be achieved if we: charge the algorithm;
make (sane of) the baes faster; add more boxes.;

of

(j)The machine has self-checking capability. A TES-

TER box periodically checks the boxes. We realize”
that there are proble.'ns such as "who tests the
TESTER?".

RELATED WORK. There is much activity in the field
¢f parallel camputation. We mention sane recent
books on the subject P1,3,9]. Most camputer compa-
nies offer machines with soe kind of parallelism
01,19,29,32,33]. A network of camputers is ano~
ther way to meke parallel computationd 14,34] . The-
re have heen recent meetings| 27,28,30]

the

». Several uni

L~

versities engage in this researcH 26,31,34].

Lambda-calculus machines. In 1971, a paper] 5} for
malizes the way to evaluate lambda-e_\pre551oqs ina
machine, M:Carr_hv s paper] 16] is classical in the
subject.

High level 1anm.xaqe machines. The idea to use
high-level language as a machine language is not
neéw. A Fortran maching 2]has been proposed., Hew—
lett—Packard has a BASIC machine. APL machines also
exist. B5500 and B6700 are inspired in Algcl| 13}.
LISP machines have been proposed| 8] .

Pipelines, The idea of many units ]o:.ntlv trans-
forming a set of data is used in pipeline architece
tures| 19,29] . We can regard the pipeline as a spe—
cial type of grill, where flow of partial results
follows rigid paths.

Tag machines. B6700 already has tag bits| 13].
Peq?;_t:%_llm‘ahzes this concept.

Asynchronous camoutation, Patilf 26] studied the
asynchronous evaluation of lanbda-expressgions. This
line of work continues. Ruwbaughf 39}desioned a
highly parallel machine for programs expressed in
a data flow language. Be has dormant as well as
active programs; his data structures are vectors
of values. A structure is shared instead of copied,
for use by several concurrent activations.

Register transfer modules. Belll 4] postulates
boxes that can be easily inter connectad to per-—
form arbitrary camputations. )

Architectures resembling curs. Miller] 24,25} des-
cribes a configurable machine based on a searcher
that féeds the operational units with new tasks to
perform. It is not configurable in ocur sense. He
uses an n by n interconnection network for recon-
figuration. Glushkovi 12] presents a recursive com-
puter architecture that is similar to'ocurs in the
sense that all program elements for which operands
are available are tc be executed by boxes. As in
our machine, his architecture allows the removal
of interruption processing programs. Kautz 18lalso
places logic into the memory of the machine. A
theory which is also relevant is described by Lan—
ainf 20] .

CURRENT TROUBLES. We do not like the camplexity
sarrounding each box. They are simple in themnsel-
ves, but they have to search the blackboard, subs-—
tract one to the father of the node just evaluated,
have a "laziness counter", ete. To support such ©
overhead, the boxes will have to be big (perform
large cperaticns), thus increasing the probability
that large parts of the hardware are not doing any
thing useful, because inside each box camputation
takes place most likely in a serial fashion.Hence,
a cheaper overhead will allow more "elementary™
boxes to access the blackboard directly, provoking
a better utilization of hardware,

CONCLUSSIONS AND RECOMMENDATIONS FOR FUTURE WORK.
We-have proposad a computer structure where seve—
ral boxes "cook™ in paraliel the program laid in
the active memory. There is no need to explicity
synchronize such boxes;. the program itself pro-
vides the time constraints. In this machine, there
is no central adninistraticn: each box knows that
o do,

We have described the behavior of such machine
for programs written in LISP, although the
approach is valid for camputations expressed in |
the lambda notation, or expression type languages.,

¢ This machine departs fram the traditional ar- -
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*chitectures in a number of ways described in the
paper. Also, the proposed architerture presents
new problems, same of which alse received atten-—
tion.

More simulations will be reguired in order to
fully understand the effects of certain paramsters
of the machine.
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